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Abstract

In this paper, we offer a geometric framework for the computing of a concept’s
conceptual vector based on its similarity position with other concepts in a vector space
called concept space, which is a set of concept vectors together with a distance
function derived from a similarity model. We show that there exists an isometry to map
a concept space to a Euclidean space. So, the concept vector can be mapped to a
coordinate in a Euclidean space and vice versa. Therefore, given only the similarity
position of a concept, we can locate its coordinate and its concept vector subsequently,
using distance geometry methods. We prove that such mapping functions do exist
under some conditions. We also discuss how to map non-numerical attributes. At last,
we show some preliminary experimental results and thoughts in the implementation
of an attribute mining task. This work will benefit attribute retrieval tasks.
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1 Introduction
For semantic computing tasks, the fundamental step is to represent and acquire themean-
ing of individual words. The representation of themeaning can either be a lexical ontology
such as WordNet (Fellbaum 1998), an attribute-based structure (Blackburn 1993), or a
distributional semantic model such as word vector model (Erk 2012; Turney and Pantel
2010). All the representations have their own advantages. Ontologies and attribute-based
models encode explicit human-readable knowledge, while word vector models offer a
good computation framework based on vector spaces. Therefore, it may be desirable to
combine the attribute-based structure with vector space models.
In this paper, we offer a framework to compute concept vectors, which is an attribute-

based semantic representation, in a vector space whose distance metric is defined by
the similarity values of words. Usually, in natural language processing (NLP), similarity
measurement is an outcome of algorithms based on semantic representation like a lexi-
cal ontology or a word vector (Finkelstein et al. 2001). However, it is also interesting to
see if we can turn our head to the other direction, i.e., using similarity values as input to
construct semantic representation. As mentioned by Turney (2006), the amount of attri-
butional similarity (i.e., semantic relatedness) between two words, A and B, depends on
the degree of correspondence between the properties of A and B. Consequently, there will
be some identical parts in the conceptual vectors of A and B. The questions are the fol-
lowing: which parts are the same in the two vectors? Is there a way to compute it? If these
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two questions could be addressed, we can calculate a word’s unknown concept vector by
the concept vectors of its similar words.
The contribution of this paper resides in several aspects. First, we use similarity values

to induce semantic structures for words, not vice versa as most previous works. Second,
unlike previous studies in attribute retrieval, we provide a mathematical framework to
compute an unknown concept vector based on its distances with other instances in a
vector space. Third, we prove that the framework is viable and show that the constraints
could be met in real applications.
The paper is structured as the following. The next section is concerned mainly about

related works. Then, we introduce the basic concepts of concept space and similarity
position as well as a walk-through example in Section 3. After that, we discuss the rela-
tion between similarity and distance. In Sections 5 and 6, we shall prove that there is
an isometry from a concept space to a Euclidean space under given conditions, which
could be met in real applications. Based on the isometry, we show a method to find the
attributes of a concept given its similarity position with other concepts. Section 7 shall
be devoted to some discussions about non-numerical attributes, while in Section 8, we
may show a mini example and some preliminary experimental results. The last section is
the conclusion.

2 Related works
2.1 Vector representation of lexical semantics

A lot of researchers represent word meaning by vectors. A category of prevalent models is
the distributional semantics models (DSMs), which are also known as word space models
(WSMs) (Baroni and Lenci 2010, 2011). These models are motivated by the distributional
hypothesis (Harris 1954), which states that words occurring in similar contexts are seman-
tically similar. Therefore, a word’s meaning is presented by a context vector in which
each dimension encodes co-occurrence information of the word in a corpus. The con-
text vectors need to be adjusted to counter the problems of high dimensionality and
data sparseness (Sahlgren 2005) or to be trained from a corpus (Baroni et al. 2014). A
number of NLP tasks could be handled as the computing of vectors in a vector space,
such as similarity measurement for short texts (Mihalcea et al. 2006), antonym-synonym
discrimination (Santus et al. 2014), semantic composition (Mitchell and Lapata 2008),
etc. (Turney and Pantel 2010) and Erk (2012), have given two detailed surveys on these
models.
Though DSM is nearly the synonym for vector space models, there are other kinds of

vector representation. Some researchers believe that human subjects can generate lists of
defining features (McRae et al. 2005; Vigliocco et al. 2004). Baroni et al. (2010) suggests
extracting a property list from a corpus which can be used as a vector space representa-
tion. Amodel related to our paper to more extent is the conceptual spacemodel suggested
by (Gärdenfors 2004, 2014). In a conceptual space, each dimension stands for a qual-
ity, such as the hue, saturation, and brightness of a color. So, each point is an entity or
property. The similarity of two entities is defined as a function of the distance between
two points in the space. There are some implementations of conceptual spaces, while
some in knowledge representation and reasoning (Frixione and Lieto 2013; Gärdenfors
and Williams 2001; Lieto et al. 2015), others in spatial information systems (Adams and
Raubal 2009; Janowicz et al. 2012; Raubal 2004).
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There are some main differences between our work and previous vector representa-
tions. Firstly, our representation of word meaning actually has two levels: the explicit level
of concept vector which is similar to a property (attribute) list and an implicit level of sim-
ilarity position, which could be viewed as an “untraditional” distributional vector in which
each dimension is the similarity with other words. Secondly, compared with Gärdenfors’
work, this paper focuses on the computation of concept vectors, while Gärdenfors’ work
is in the cognitive science domain and “not developing algorithms” as noted in the preface
of Gärdenfors (2004).

2.2 Semantic similarity and its calculation

Similarity is a widely used notion in different subjects. Previous reserachers (Gentner
1983; Medin et al. 1990; Turney 2006) state that there are two types of similarity: attribu-
tional similarity, which is the correspondence between attributes, and relational similarity,
which is the correspondence between relations. Turney and Pantel (2010) mention that
attributional similarity is equivalent to semantic relatedness (Budanitsky and Hirst 2001)
in computational linguistics, and semantic similarity should involve in both attributional
and relational similarity.
The majority of researchers have put emphasis on the similarity of words. In psycho-

logical experiments, the semantic similarity between two words is a fixed value computed
from the average of the annotated values given by a group of subjects (Miller and Charles
1991), while in NLP applications, the similarity is calculated by various algorithms. A
popular category of models uses a lexical ontology as the resource, such as WordNet.
These methods usually depend on the distance between two concepts in the ontology (Li
et al. 2003; Resnik 1995; Wu and Palmer 1994), ontological features (Petrakis et al. 2006;
Rodríguez and Egenhofer 2003; Sánchez et al. 2012), or information content (Jiang and
Conrath 1997; Liu et al. 2012). Varelas et al. (2005) have provided an evaluation of such
methods.
Some researchers utilized contextual information in similarity computing. Such infor-

mation is usually extracted from a corpus. Jiang and Conrath (1997) used corpus statistics
as a correction for edge-counting methods. Li et al. (2003) combined the information
from WordNet and corpus. Gao et al. (2015) introduced another model combining
edge-counting and information content. Researchers in DSM used word similarity mea-
surement as an benchmark task, in which the similarity of words were measured as
the similarity of the correspondent word vectors (Agirre et al. 2009; Baroni et al. 2014; Erk
2012; Mihalcea et al. 2006; Turney and Pantel 2010). For vector-based methods, the most
popular way to compare vectors is vector cosine (Turney and Pantel 2010). Other widely
used methods include geometric measures like Euclidean distance, Manhattan distance,
measures from information theory (Bullinaria and Levy 2007), and more recent methods
like APSyn (Santus et al. 2016). Besides corpus, other contextual information like Web
information are used as well. Researchers based their calculation on variations ofWeb co-
occurrence (Chen et al. 2006; Han et al. 2013a) or snippets from search engines (Bollegala
et al. 2007).
For cognitive scientists, similarity between concepts is also a main topic. Many

researchers suggest that similarity be viewed as a function of distance (Gärdenfors 2004;
Hahn and Chater 1997; Nosofsky 1992; Reisberg 2013; Shepard 1987). Models derived
from such an assumption is called a geometric model of similarity. If we apply the
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geometric model to words, the similarity between two words could be calculated from
the distance of two attribute vectors in a conceptual space (Gärdenfors 2004). It has to be
noted that the geometric model has been criticized by some researchers, most famously
by Tversky (1977), who has suggested feature model instead, in which similarity is not
measured by distance, but by two concepts’ common and distinct features. One of Tver-
sky’s criticism is on the symmetry axiom (Hahn and Chater 1997) of the geometric model.
Tversky showed that Tel Aviv is more similar to New York than New York is similar to Tel
Aviv. Gärdenfors (2004) has responded to this criticism, stating that the weight of dimen-
sions in the attribute vector is different between when comparing Tel Aviv with New York
and when comparing New York with Tel Aviv.

2.3 Attribute mining approaches

The framework of this paper could be applied to attribute mining tasks directly. The
majority of works in attribute mining focus on extracting values for pre-specified
attributes, such as person names. There is a sub-task of WePS (Web People SearchWork-
shop) (Artiles et al. 2010; Artiles et al. 2009) concerning the extraction of affiliation (Nagy
et al. 2009), gender, and profession (Tokunaga et al. 2005) of people. Besides the extraction
of person attributes, there are also some works on product property extraction, such as
Ghani et al. (2006) and Probst et al. (2007), in which the researchers extracted “attribute-
value” pairs from product descriptions. Such methods have been widely used in opinion
mining tasks for products, such as Pang and Lee (2008) and Liu (2011).
The resources from which the researchers extracted attributes also differ. Some

researchers (Brin 1999; Kopliku et al. 2011; Sekine 2008; Suchanek et al. 2008) ana-
lyzed structured or semi-structured text, such as HTML tables and encyclopedias. Others
(Bellare et al. 2007; Pasca and Benjamin V. Durme 2007; Tokunaga et al. 2005) used a cor-
pus or Web text. They usually used lexico-syntactic templates for the extraction. Only a
few researchers started to use similarity as a tool for attribute retrieval, such as Alfonseca
et al. (2010) and Liu and Duan (2015).

3 Basic notions and a walk-through example
3.1 The scope of our task

In this paper, we will compute word meaning by similarity. Before entering into details,
we would like to define the scope of our task.
Firstly, we take the cognitive view of meaning, which states that the meaning of a word

is a mental entity (Gärdenfors 2004): a concept. Hereafter in this paper, we use the term
“concept” to denote word meaning. To save our framework from the details of a language,
we are computing concepts, not words. Moreover, we use a concept vector to represent
each concept. Dimensions of the vector represent attributes, which are mathematical
specifications of the concept’s properties.
Secondly, we view (semantic) similarity as the synonym of attributional similarity since

we do not include the relation of word pairs in our framework. Consequently, the “gold”
similarity of two concepts ought to be decided by their attributes, i.e., concept vectors.
Since the target concept vector is unknown to our task, we approximate the gold similarity
by selected similarity computing algorithms.
Finally, we take the geometric view of similarity despite the previous critics. The rea-

son is that we are not seeking a perfect representation of similarity, as our work is more
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focused on the implementation/computing level. We believe the geometric model is a
good enough approximation of similarity at this time. Moreover, since the similarity val-
ues are generated by algorithms in our framework, we can also pick similarity algorithms
which conform to conditions in Section 4, which guarantees the algorithm is close to a
geometric model.

3.2 Basic definitions

While we are taking into discussion of an attribute in a concept vector, we are referring to
the attribute name and value together. The name is a natural number which is an index
in the vector, and the value is a real number. At this step, we shall also assume that the
values are all real number values. We will discuss the case of non-numerical values, such
as string values in Section 7. We also assume that all attributes have only one value, not
multiple values.
Formally, let C be a set of all concepts within a domain. If we have an order on the set

of all the possible attributes in C, we can construct the representation of the concept c as
a vector of values while the subscripts of the vector components correspond to attribute
names.

Definition 1 The concept vector of a concept c is a vector v = (v1, v2, . . . , vN ), in which
N is the number of attributes in C and vi is the value of the ith attribute.

Definition 2 A concept space is a pair (C, t◦ s), in which C is a set of concept vectors and
d = t ◦ s is a distance function derived from the similarity model s and the transformation
function t.

In Definition 2, a similarity model outputs a similarity value for two concepts. We will
discuss it in detail later. The concept space can also be viewed as a set of “known” concept
vectors and their distances.When there is no ambiguity, we will use C to denote the whole
concept space.
We will also introduce the zero vector 0 whose components are all 0s for the sake of

further calculations.
Sometimes, a concept can be represented by an “attribute-value structure” (AVS), which

contains attributes and their values can also be an AVS. For recursive values, we “flatten”
the AVS to be a vector of attribute-value pairs, {〈a1, v1〉, 〈a2, v2〉, . . . , 〈aN , vN 〉}. A possible
method for flattening is to join the attribute names from the root of the AVS to the deepest
value. For example, in a LAPTOP concept, we can have an attribute cpu, while the value of
cpu is another concept INTELCORE, which has an attribute speedwith the value of 2.4 G.
Then, the speed attribute denoted as LAPTOP.cpu.speed in a recursive AVS could be
rewritten as LAPTOP.cpu_speed which is a direct attribute under the concept LAPTOP.
A word similarity computing method can be taken as a function. Consequently, we have

the following definition of a similarity model for our paper, which inputs could be concept
vectors or concepts (without their vectors). A similarity model could be annotation-based
or algorithm-based.

Definition 3 A similarity model is a function si : C ∪ C × C ∪ C →[ 0, 1]. S is the set of
all similarity models.
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In fact, a similarity model in Definition 3 is a similarity computing algorithm. Though
the input is a concept by definition, in practice, it will be a correspondent word in a
specified language.
Given a concept space and a similarity model, we have the following definition of the

similarity position of a concept cu.

Definition 4 The similarity position sp of cu in concept space (C, t ◦ si) is defined as:

sp = (si(cu, v1), si(cu, v2), . . . , si(cu, vM)) (1)

In the above definition, vi ∈ C for i ∈[ 1,M]. The set of all similarity positions is denoted
asP.

3.3 An outline of our framework by a walk-through example

In order to illustrate our work better, we would like to give a sketch of our framework
taking a very simple example which will also be used over the next two sections. The main
target of this paper is to solve the following problem:

Problem 1 Given:

1. A concept space (C, t ◦ s) whose size is M.
2. A similarity position sp whose correspondent concept vector is vp.

We want to find a function g s.t. g(C, t ◦ s, sp) = vp.

Just let us try to suppose all concepts in one domain have only two attributes: “can_fly”
and “can_swim”. We have three known concepts which are swan, butterfly, and fish. So,
the correspondent concept space C′ is consisted of three concept vectors v1, v2, and v3
respectively:

v1 = {1, 1}
v2 = {1, 0}
v3 = {0, 1}

Suppose there exists a similarity function s which will produce similarity values for each
concept pair. Please be noted that we may not know the mechanism of the similarity
function but only the values, which is shown in a similarity matrix S below in which Sij =
s(vi, vj).

S =
⎛
⎜⎝

1 0.5528 0
0.5528 1 0.1056

0 0.1056 1

⎞
⎟⎠

Now, we have an unknown concept x. We do not know its concept vector v0. In other
words, we do not know its attributes. However, we know its similarity values with other
concepts according to observation, and the values are generated by the same similarity
function aforementioned. The similarity position of x is (0, 0.1056, 0.5528). We want to
solve v0 in the steps below:

1. Transform the similarity values to distance values in C′.
2. It is obvious to see that C′ is not a Euclidean space. Since it is easier to do algebra in

Euclidean spaces, we will first try to transform C′ to a Euclidean spaceD′.
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3. InD′, we will locate the coordinate of x by its distance with other points using
distance geometry methods. Then, we will convert the coordinate inD′ to that in
C′, which is our target vx.

In the following three sections, we will illustrate and prove the viability of the above
three steps.

4 Similarity as a function of distance
As mentioned in Section 3, we adopt a geometric view of similarity. So, similarity is taken
as a function of distance. Previous researchers in psychology suggest that similarity be
viewed as an exponentially decaying function of distance (Gärdenfors 2004; Hahn and
Chater 1997; Nosofsky 1992; Reisberg 2013; Shepard 1987).

s(x, y) = e−c·d(x,y) (2)

In Eq. 2, c is the decay factor.
Nosofsky (1986) argues that the above function should be a Gaussian function.

s(x, y) = e−c·d(x,y)2 (3)

In the area of computational linguistics, Jin et al. (2014) showed that a function of word
similarity meets the properties for a distance metric. The relation between similarity
function and distance function is as follows:

s(x, y) = 1 − d(x, y) (4)

We model the transformation between a similarity model and a distance function using
a transformation function.

Definition 5 A function t :[ 0, 1]→[ 0, 1] is a transformation function, if there is a pair
of similarity model s and distance function d s.t. d = t ◦ s and s = t−1 ◦ d.

However, for a similarity model in NLP, it is not necessarily a function of distance unless
it satisfies some basic properties. It is well-known that there are three defining properties
for a distance function:

• (Reflexive) d(x, x) = 0
• (Symmetric) d(x, y) = d(y, x)
• (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z)

We will show two examples that satisfy the above properties first.

Example 1 The similarity function for the walk-through example is a function of
distance.

Just set the transformation function as t(x) = 1 − x. It is easy to see that the resulting
distances in the walk-through example are symmetric and reflexive. Furthermore, we can
see that the distances (0.4472, 0.8944, 1) conform to the triangle inequality property. So,
t ◦ s is a distance function.

Example 2 Any similarity model based on edge counting is a function of distance.
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The “edge counting” methods, which calculate similarity based on the distance of two
concepts on the hierarchy, are a common family of similarity models. Let e(c1, c2) be the
number of edges of c1 and c2 on the hierarchy; it is obvious that e is a distance function.
So, any similarity function se = te ◦ e is by definition a function of distance. If te also has
an inverse function, it is a transformation function.

Theorem 1 If t(x) = 1 − x, d = t ◦ si is a distance function ⇐⇒
1. si(x, x) = 0
2. si(x, y) = si(y, x)
3. si(x, y) + si(y, z) ≤ si(x, z) + 1

Proof 1 The proof of properties 1 and 2 is obvious.
If properties 1 and 2 hold, then from the defining properties of a distance function, we

know d is a distance function ⇐⇒ d(x, y) + d(y, z) ≥ d(x, z).

d(x, y) + d(y, z) ≥ d(x, z) ⇔ 1 − si(x, y) + 1 − si(y, z) ≥ 1 − si(x, z)

⇔ si(x, y) + si(y, z) ≤ si(x, z) + 1

Theorem 2 If t(x) = − 1
c ln x, d = t ◦ si is a distance metric ⇐⇒

si(x, x) = 0
si(x, y) = si(y, x)
si(x, y) · si(y, z) ≤ si(x, z)

Proof Omitted.

5 Mapping from concept spaces to Euclidean spaces
5.1 The general case

To compute within concept spaces, we would like to map them to some spaces we are
familiar with: Euclidean spaces. We will first show the general constraints for a concept
space to be isometric to a Euclidean space. In other words, we will show that the mapping
is possible by proofs.

Theorem 3 Let (C, d) be a concept space. There exists an isometry f : C → RN , if the
following constraints are met:

1. (Finite dimension) ∀c ∈ C, |c| = N ∈ N

2. (Translation invariance) ∀x, y,u ∈ C, d(x, y) = d(x + u, y + u)

3. (Scaling invariance) ∀x, y ∈ C, a ∈ R, d(ax, ay) = |a|d(x, y)

Proof We will first prove C is a normed space. By the definition of a concept space, d is
a distance function. Therefore, (C, d) is a metric space. Since we have constraints 2 and
3, we can induce a norm function p(x) = d(x − 0) which satisfies the norm definition.
Consequently, (C, p) is a normed space.
Because (C, d) is a N-dimensional normed space, it is isometric to all N-dimensional

normed spaces as long as N ∈ N. SinceRN is also an N-dimensional normed space, C is
isometric toRN .
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In the following subsections, we will show that the constraints of translation and scaling
invariance can be met for concept spaces with some simple conditions.
Since f is an isometry, it has two useful properties.

Corollary 1 d(c1, c2) = ‖f(c1), f(c2)‖2, in which ‖ · ‖2 is the Euclidean distance.

Corollary 2 f has an inverse function.

5.2 The scaling and translation invariance conditions

Following the definition of subsumption of metric spaces, we say that a concept space
(C′, d′) is a hyperset of (C, d) if and only if C ⊆ C′ and d ⊆ d. Obviously, if we can find
a hyperset of C that is isometric to RN , Corollary 1 is true for all concept vectors in C.
Therefore, our target now is to find a hyperset ofC that is scaling and translation invariant.

Theorem 4 Let (C, d) be a concept space. There exists a hyperset (C′, d′) of (C, d) which
is scaling invariant if C is finite and there is a boolean attribute.

Proof We want to prove ∀x, y ∈ C′, a ∈ R, d(ax, ay) = |a|d′(x, y). Let us construct the
(C′, d′) = (C, d) initially.
If a = 0, d(ax, ay) = d(0, 0) = 0 = 0 · d(x, y).
If a = 1, obviously, it is true.
If a �= 0 or a �= 1, since there is a boolean attribute, ax �∈ C and ay �∈ C. Therefore,

let C′ = C ∪ ax, ay and d′(ax, ay) = |a|d′(x, y). Since C is finite, by this manner, we can
construct a scaling invariant (C′, d′).

In practice, any concept space is within a domain and is finite; otherwise, it is not com-
putable. Moreover, it is reasonable to assume that at least one, if not the majority, of the
attributes is boolean.
Different from scaling invariance, the constraint for translation invariance seems to be

stricter. To begin with, we will first introduce a property on distance functions. A distance
function d on the concept space C is decomposable if the value of d(x) is decided by the
attributes of x independently. In other words, d(v1, v2) = d̃(k), in which ki = τi(v1i, v2i). It
is reasonable to imagine that τi is a kind of distance function on the values of an attribute.

Theorem 5 Let (C, d) be a finite concept space. There exists a hyperset (C′, d′) of (C, d)
which is translation invariant if:

1. d is decomposable, i.e. ∀v1, v2 ∈ C, d(v1, v2) = d̃(k), in which ki = τi(v1i, v2i).
2. Each function τi is translational invariant, i.e. ∀x, y,u ∈ R, τi(x, y) = τi(x+u, y+u).

Proof Let us construct (C′, d′) = (C, d) initially.
If v1 + u and v2 + u ∈ C, d(v1 + u, v2 + u) = d̃(τ1(v11 + u1, v21 + u1), . . . , τN (v1N +

uN , v2N + uN )). Because τi is translation invariant, the above equation equals to
d̃(τ1(v11, v21), . . . , τN (v1N , v2N )) = d(v1, v2).
If v1 + u or v2 + u does not belong to C, let us first assume v1 + u �∈ C. We just let

C′ = C∪ v1 + u and set d′(v1 + u, v2 + u) = d(v1, v2). If v2 + u �∈ C, add v2 + u to C′ and
set the value of d′ accordingly.
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The intuitive for the above theorem is straightforward. If the distance function is the
combination of distance functions of each attribute, the translation invariance condition
is now imposed on these distance functions on attribute values, which is much easier to
verify. It is reasonable to assume that there exist some attribute-level distance functions
derived from the Euclidean distance onR. So, we have the following corollary.

Corollary 3 A finite concept space (C, d) in which d is decomposable has a translation
invariant hyperset if ∀i τi(a, b) = τ̃i(|a − b|), in which τ̃i is a function onR × R.

Proof For any x, y,u ∈ R, τi(x+u, y+u) = τ̃i(|x+u−y−u|) = τ̃i(|x−y|) = τi(x, y).

As we have discussed before, boolean attributes are common in concepts. For these
attributes, there is a more direct necessary constraint for translation invariance.

Corollary 4 If the finite concept space (C, d) has boolean attributes, e.g., the ith
component of the concept vector, C is translation invariant only if τi(0, 0) = τi(1, 1).

Proof Omitted.

5.3 The linear approximation of isometry

On the implementation level, an easy guess of the isometry function f is that it may be (or
be approximated by) a linear weighting function since different attributes contribute dif-
ferently to similarity. Researchers in cognitive science have such assumptions (Gärdenfors
2004).
Let us return to the walk-through example. Suppose the weight vector is (w1,w2). So,

the isometric function is f(v) = (w1v1,w2v2). We can have the following equations:

d(v1, v2)2 = w2
1(v11 − v21)2 + w2

2(v12 − v22)2

d(v2, v3)2 = w2
1(v21 − v31)2 + w2

2(v22 − v32)2

Substitute d(v1, v2), d(v2, v3), v1, and v2 with their values, we will have a system of linear
equations.

w2
2 = 0.8

w2
1 + w2

2 = 1

Since w1 and w2 are positive, we get w1 = 0.4472 and w2 = 0.8944.
In order to give a general solution, we will first introduce the following definition.

Definition 6 A weight matrix Wi = (wij)N×N is a diagonal matrix depending on the
similarity model si, where

wij =
{
0 j �= k
The weight for the kth attribute j = k

Please be noted that weight matrix is equivalent to a weight vector. We use matrix
because it is easier to represent in terms of matrix calculation.
For an isometry f, we just assume that we can find a weight matrixWi such that for any

v ∈ C, f(v) = Wi · vT .
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Let v1 = (v11, . . . , v1N ) and v2 = (v21, . . . , v2N ). Since f is an isometry, from Corollary 1,
we have the following:

d(v1, v2)2 = ‖f(v1), f(v2)‖22 =
∑

k∈[1,N]
w2
kk(v1k − v2k)2 (5)

Suppose we have M concepts and N attributes in the concept space. Let us introduce
the following definitions.

Definition 7 The subscript vector r = ((1, 1), (1, 2), . . . , (1,M), (2, 3), . . . , (2,M), . . . ,
(M − 1,M)).

r is a vector of all possible combination of two subscripts in a concept space C.

Definition 8 The coefficient matrix A = (aij)M(M−1)/2×N , where aij = (vri1j − vri2j)2.
Here, ri1 means the first number of the ith component of r. vxy means the yth component

of vx. Similarly, the support vector b is a M(M−1)/2×1matrix. Let denote d(vi, vj) as di,j.

b = (
d21,2, d

2
1,3, . . . , d

2
1,M, d22,3, . . . , d

2
M−1,M

)T

The augmented matrix B =[A, b ] is a row block matrix consisting of A and b.

Theorem 6 Given a concept space C, there exists a weight matrixWi satisfying

∀u, v d(vu, vv) = ‖Wi · vuT, Wi · vvT‖2

if rank(A) = rank(B) = N.

Proof Let w be a matrix of N × 1. A · w = b is a linear equation system.
Since rank(A) = rank(B) = N , there exists the only solution w0 = {w1,w2, . . . ,

wk , . . . ,wN }. So, for any two concept vectors vu and vv, there is one correspondent linear
equation:

∑
k∈[1,N]

w2
k(vuk − vvk)2 = d(vu, vv)2

Let us constructWi from w s.t. wkk = wk . Rewriting the left-hand side of the equation,
we will have

∥∥∥Wi · vuT ,Wi · vvT
∥∥∥2 = d(vu, vv)2

Since d(vu, vv) is positive, we reach our target.

There are two notes related to the above theorem. First, as our condition in Theorem 6
is quite strong, we may get the slack solution of the equation by least squares estimation
or other estimation methods in practice. Second, if W−1

i does not exist, i.e., ∃k,wkk = 0,
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we are not able to calculate v from f(v). In this case, we will exclude vk from the concept
vectors because wkk = 0 means that vk does not contribute to this similarity model since
it is not helpful for further calculations.

6 Locating a concept in the concept space by its similarity position
From the above section, we know that there exists an isometry f between C and RN . We
call the mapped concept vectors in RN as d-vectors. We use di to denote the d-vector of
a concept vector vi, i.e., di = f(vi). So, a rewritten form of Corollary 1 is

‖di,dj‖2 = t ◦ s(vi, vj)

In other words, the Euclidean distance between two d-vectors equals to the similarity-
derived distance of the correspondent concept (vectors).
Reviewing Problem 1, now, we are going to find a function that can map a similarity

position sp into a d-vector d given a set D of known d-vectors in RN . Since sp can be
converted to the distances from other points in theD, the problem is similar to locating a
point’s coordinates given its distance with other points in RN . Such problems have been
discussed in distance geometry, which concerns some geometric concepts in terms of dis-
tances. The fundamental problem in distance geometry is the distance geometry problem
(DGP) (Liberti et al. 2014).

Given an integer K > 0 and a simple undirected graph G = (V ,E) whose edges are
weighted by a nonnegative function d : E → R+, determine whether there is a
function x : V → R

K such that ∀{u, v} ∈ E ‖x(u) − x(v)‖ = d({u, v}).
Though started as a purely mathematical problem, DGP is gaining more and more pop-

ularity in bio-informatics, in which researchers use related algorithms to construct molec-
ular structures. Our problem is also a sub-problem of DGP, which can be transformed
into the following form:

Problem 2 How to find a function g∗ s.t. g∗(D,p) = dj, given

1. The coordinates of all vectors inD.
2. The distance of a d-vector dp with all points inD. The distances are denoted as a

vector p in which pi = t ◦ si(vp, vi), where vp is the correspondent concept vector
of dp.

The general DGP inN-dimension is NP-Hard. However, Dong andWu (2002) suggest a
method to solve the problem inO

(|D| · N3) if all the inter-point distance values are given.
Using Dong’s method, we will first show a simple solution to our walk-through example
in Section 3.3.
Since we have already known that the weight vector is (0.4472, 0.8944), the d-vectors

are d1 = (0.4472, 0.8944),d2 = (0.4472, 0), and d3 = (0, 0.8944). Given the similarity
position (0, 0.1056, 0.5528), we can calculate the distance position as (1, 0.8944, 0.4472).
So, we want to locate a point d0 = (x, y) in the space which has a distance of 0.8944, 1, and
0.4472 with d1, d2, and d3 respectively. Considering the definition of Euclidean distance,
we will have
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‖d0 − d1‖2 = (x − 0.8944)2 + (y − 0.4472)2

= x2 + y2 − 1.7888x − 0.8944y + 1 = 12 (6)

‖d0 − d2‖2 = (x − 0.0.8944)2 + y2

= x2 + y2 − 1.7888x + 0.8 = 0.89442 (7)

‖d0 − d3‖2 = x2 + (y − 0.4472)2

= x2 + y2 − 0.8944 + 0.2 = 0.44722 (8)

In order to solve x and y, let us minus Eq. 6 from Eqs. 7 and 8 to have the following two
equations:

1.7888x = 0 (9)

0.8944y = 0 (10)

So, x = 0 and y = 0. Divide the coordinates with the weigh vector; we have the unknown
concept x’s concept vector as (0, 0).
Since Dong’s algorithm was designed for three dimension spaces, we will extend it to

a general case of N-dimension in which N is the size of our distance vector as well as
the number of attributes. The coordinates of any d-vectors dj(j ∈[ 1,M]) inD are already
known, in which M is the size of the concept space. To simplify our discussion, we will
denote the unknown vector dp as d0. We can have the following representation of any
d-vector dk inD ∪ {d0}.

dk = (uk1,uk2, . . . ,ukN )T k ∈[ 0,M] (11)

The distance between any known dj and the unknown d0 can be calculated as the fol-
lowing. Remember that pj is a component in p, which identifies the distance between d0
and dj. So by definition, we have

‖d0 − dj‖2 = p2j (12)

Expanding the left-hand side of the equation, we will have Eq. 13.

‖d0 − dj‖2 = ‖d0‖2 − 2d0Tdj + ‖dj‖2 = p2j (13)

Expand d0 and dj in Eq. 13 in their full vector forms as in Eq. 11; we have the general
distance constraint (Eq. 14).

‖d0‖2 − 2u01uj1 − . . . − 2u0NujN + ‖dj‖2 = p2j (14)

Let us make a copy of Eq. 14 by setting j as 1.

‖d0‖2 − 2u01u11 − . . . − 2u0Nu1N + ‖d1‖2 = p21 (15)

Subtract Eq. 15 from 14, we will have

2u01(u11 − uj1) + . . . + 2u0N (u1N − ujN )

= (‖d1‖2 − ‖dj‖2
) −

(
p21 − p2j

)
(16)

Through a closer look of Eq. 16, we can see that the right-hand side has nothing to do
with d0, so the right-hand side value is known to us. On the left-hand side, u01 to u0N are
the components of the unknown d0, while the “coefficients” of them can be calculated by
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d1 and dj. So, let us create M copies of Eq. 16 with the values of j ranging from 1 to M.
The equations form a linear equation system which can be rewritten as

A∗d0 = b∗ (17)

A∗ = (amn)M×N and b∗ = (b1, b2, . . . , bM)T where

amn = 2(u1n − umn) (18)

bm = (‖d1‖2 − ‖dm‖2) − (
p21 − p2m

)
(19)

Theorem 7 D is a set of d-vectors, dp is a d-vector, and p is the distance position of dp.
There exists a function g∗ : 2D ×P → D s.t. g∗(D,p) = dp if rank(A∗) = rank(B∗) = N,
in which B∗ =[A∗, b∗ ].

Proof Let g′ be a function that will solve a linear equation system. For any p, we can
construct correspondent A∗ and b∗ using p andD. So, the domain and range of g′ are the
same as g∗.
Since rank(A∗) = rank(B∗) = N ,A∗d = b∗ has only one solution d0. So, f ′(D,p) = d0.
Also from Eq. 17, we can see that d0 satisfies Eq. 13 for all vectors in D. So, d0 = dp,

and consequently, g′ = g∗.

Having obtained the above theorem, we can reach the following theoremwhich answers
Problem 1 directly.

Theorem 8 (C1, t ◦ si) is a finite concept space. sp is a similarity position and vp is the
correspondent concept vector. N is a finite number of attributes. There exists a function g
s.t. g(C1, t ◦ s, sp) = v if the following conditions are true:

1. C1 is scaling and translation invariant.
2. rank(A∗) = rank(B∗) = N .

Proof Since C1 is scaling and translation invariant, and N is a finite number, from
Theorem 3, we know that there exists an isometry f from C toRN .
Let D = {f(v)}∀v∈C1

. We can then construct the distance position p = t(sp). From
Lemma 7, we know g∗ exists because rank(A∗) = rank(B∗) = N . So,

g∗(D1,p) = dp

From Corollary 2, we know that f−1 exists. So,

vp = f−1(dp) = f−1(g∗(D1,p)) = f−1(g∗({f(v)}∀v∈C1
, t ◦ sp))

Finally, g(C1, t ◦ s, sp) = f−1(g∗({f(v)}∀v∈C1
, t(sp))).
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7 Transforming non-numerical attribute values
In real scenarios, some values are not numerical. In this case, we have to extend our frame-
work to non-numerical values, mostly string values. We will first give some definitions for
the sake of further discussion.

Definition 9 Let Vi be the set of all possible values of an attribute ai. σi : Vi×Vi →[ 0, 1]
is a similarity function on Vi.
A value mapping function is a bijective function mi : Vi → RM in which M ≥ 1 s.t.

∀v1, v2 ∈ Vi, δi(v1, v2) = ‖mi(v1) − mi(v2)‖2

For a non-numerical concept vector v = (v1, v2, . . . , vN ), its numerical version is v′ =
(m1(v1), m2(v2), . . . , mN(vN )), and the length of v′ is

∑N
i=1 |mi(vi)|. As in Section 5.2, we

assume that the distance between two concepts is decomposable. It is also reasonable to
assume that the distance of concepts depends on the distance of correspondent values.
So, we have the following property for concepts c1 and c2.

d(c1, c2) = d̃(δ(v11, v21), δ(v12, v22), . . . , δ(v1N , v2N )) (20)

Let v1 be the concept vector of concept c1, so v1 = (m1(v1), m2(v2), . . . , mN(vN )). It
is easy to see that d(c1, c2) = d̃(v1, v2). Therefore, our mapping preserves the distance
between the concepts.
In discussions of later sections, since we will concentrate on the construction of mi only,

we drop the subscript i to simplify notations. Subsequently, we have the value set V, value
mapping function m, and distance function δ.

7.1 M = 1

A trivial case is that V is already numerical, as we have discussed in previous sections. So,
m(v) = v if V ⊂ R.
Another case is that V is not numerical but it can be embedded into R, i.e., ∀v1, v2 ∈

V , δ(v1, v2) = |m(v1) − m(v2)|. The following algorithm will construct m for each v in V.

Theorem 9 There exists a value mapping function m from V to R ⇐⇒ Algorithm 1
can findm(v) for any v ∈ V.

Proof Omitted.

7.2 M > 1

A more complicated situation is that V can only be mapped to R
M in which M > 1.

We will first discuss a common but simple case here. For some attribute, its values are
independent, i.e., for any two different values, their similarity/distance remain the same.
So, we can map the value to a binary sequence, with each bit represents a value option.
If ∀v1, v2 ∈ V δ(v1, v2) = d, we can construct the value mapping function m : V ×V →

R|V | as the following:

m(vi) = w, in which wj =
{ √

2
2 d j = i
0 j �= i

(21)
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Algorithm 1 Construct value mapping function m ontoR

Require: A finite set V, δ : V × V → R.
Ensure: ∀v1, v2 ∈ V , δ(v1, v2) = |m(v1) − m(v2)|

V ′ = V
Select v0 ∈ V .
V ← V/{v0}, V ′ ← V ′ ∪ {v0}
m(v0) ← 0
while |V | > 0 do

Select any vk ∈ V .
if ∀vi ∈ V ′ |δ(v0, vk) − m(vi)| = δ(vi, vk) then

m(vk) ← δ(v0, vk)
else if ∀vi ∈ V ′ |δ(v0, vk) + m(vi)| = δ(vi, vk) then

m(vk) ← −δ(v0, vk)
else

m does not exists.
break

end if
end while

Obviously, m satisfies the definition of a value mapping function, because for any v0 �=
v1,

‖m(v0), m(v1)‖2 =
√√√√

(√
2
2

d
)2

+
(√

2
2

d
)2

= d = δ(v1, v2)

For other kinds of attributes, the problem to find a value mapping function is a general
DGP problem. If we can find an embedding m : V × V → RK , m satisfies the definition
of a value mapping function. The problem is quite complicated, so we will only give the
general condition here. Let S∗ be the similarity matrix of value pairs in Vi. According to
Sippl and Scheraga (1986), S∗ can be embedded in R

K but not RK−1 if and only if:

• There is a principal (K + 1) × (K + 1) submatrix D ∈ S∗, the Cayley-Menger
determinant of D is non-zero.

• For μ ∈ 2, 3, every principal (K + μ) × (K + μ) submatrix E that includes D has zero
Cayley-Menger determinant.

8 Further discussions: preliminary implementation examples
The direct application of our framework is to solve our prime problem, which is a kind
of attribute mining task. We will first show a mini example which involves an initial
implementation of our methods as well as several interesting test cases in this section. In
the second part of the section, we will discuss the outline and difficulties of an ongoing
attribute mining experiment.

8.1 Amini example

We will take a mini example to show an initial implementation to our geometric method.
Given a small set of concepts (called instances) which have only binary attributes, we tried
to find the attributes of a new concept based on its similarity with the instances. This
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set of instances is from the formal concept analysis (FCA) domain (Wille 1984). The set
shown in Fig. 1 contains eight concepts of water-related plants and animals. Each concept
has nine attributes. To simplify further discussions, we refer to the first attribute “needs
water to live” as a1, “lives in water” as a2, and so on.

8.1.1 The initial implementation

We have completed the initial implementation of the following steps:

Creating the similarity function We used the UMBC Phrase Similarity Service
(Han et al. 2013b) to calculate similarity. The service has two types: concept similarity and
relation similarity. Our similarity function s is a hybrid of the two types.

s(a, b) = αs1(a, b) + (1 − α)s2(a, b) (22)

In the above equation, s1 and s2 are the concept and relation similarity functions
respectively. α is set to 0.5 initially. The distance function d is set as d(a, b) = 1 − s(a, b).

Finding an approximation to the isometry function Following discussions in
Section 5.3, we used a linear weighting function f to approximate the isometry from the
concept space of instances to a Euclidean space. Let us recall Eq. 5:

d(v1, v2)2 = ‖f(v1), f(v2)‖22 =
∑

k∈[1,N]
w2
kk(v1k − v2k)2

Given a set of v and the distances between them, to solve wkk could be viewed as a
linear regression problem, which was solved by Ridge regression. We refer to wkk as wk in
following discussions.

Finding the attributes of a concept

1. We found the similarity of the given concept to the instances and transformed the
similarity values into distance values.

2. The concept vectors of instances were transformed to d-vectors by the linear
weighting function.

Fig. 1 “Live in water” example (http://www.upriss.org.uk/fca/examples.html)

http://www.upriss.org.uk/fca/examples.html
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3. Following Eq. 17 in Section 6, we set up a system of linear equations and get the
slack solution by least squares.

4. Since the attributes are binary, we discretized the result vector. The discretization
function employed the following equation.

vi =

⎧⎪⎨
⎪⎩

1 vi ≥ β

0 vi < β

−1 w2
i = 0

(23)

vi = −1means the instances cannot predict the value of vi, because wi = 0, which
means that the i th attribute does not contribute to the similarity.

8.1.2 Test cases

Because there is no “bream” in the UMBC vocabulary, we substituted it with “trout” with
the same attributes (Table 1). Setting α = 0.5, let us first take a look at the weights of the
linear weighting function trained. We will see that there are three abnormal values. w2

1 is
0 because for all concepts, a1 is always 1, so it does not contribute to the calculation of
similarity. w2

5 and w
2
6 have negative values which can only be resulted from approximation

errors. Maybe since a5 and a6 concern about two biology terms “monocotyledon” and
“dicotyledon,” they have little impact on some similarity measurement. In practice, we set
negative weights such as w2

5 and w2
6 to 0.

We first tried four concepts which are not very similar to existing instances. They were
“swan,” “buffalo,” “water lily,” and “dolphin.” Table 2 shows the results for the five concepts.
We can see that in these test cases, the majority of attributes are correct, but still, there
are some errors.
We also extended the test cases a bit. We created a concept set of 50 concepts including

the original eight concepts. The concepts are all animals or plants related to water. We
performed ten times fivefold cross validations on the data set. The correctness is mea-
sured on the attribute level using the following equation. Since a1, a5, and a6 contribute
little to similarity measurement as we have discussed before, we did not evaluate these 3
attributes.

C = Number of correct labelled attributes
Number of all attributes

(24)

The results of the experiment are shown in Table 3. The best result (0.760) comes
from Setting 2 where α = 0.5 and β = 0.2. For all the ten cross validations, the results
remain quite consistent. For all settings, β is 0.2 because we found that changing β from
0.2 to 1 does not impact our result much. Settings 1 to 3 differed in the value of α.
From the results, we can see that the hybrid model outperforms concept model or rela-
tion model. Setting 4 used ordinary least squares instead of Ridge regression. The result
shows that there is not much difference between these two. Setting 5 used the logarithm-
based function to transform similarity value to distance value, s.t. t(x) = − log(x) instead
of t(x) = 1 − x. We can see that this lowered the performance significantly. We guess
t(x) = − log(x) is not an ideal transformation function for this similarity model.

Table 1 The weights of the linear weighting function

w2
1 w2

2 w2
3 w2

4 w2
5 w2

6 w2
7 w2

8 w2
9

0.0 0.136 0.016 0.125 −0.045 −0.005 0.125 0.006 0.077
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Table 2 Results for the four new concepts with α = 0.5 and β = 0.2

Concept a1 a2 a3 a4 a5 a6 a7 a8 a9

Swan −1 1 1 0 −1 −1 1 1 0

Buffalo −1 0 1 0 −1 −1 0 1 1

Water lily −1 1 0 1 −1 −1 0 1* 1*

Dolphin − 1 1 1 0 −1 −1 1 1 0*

Incorrect values are marked with asterisk

We want to emphasize that by this preliminary experiment, we do not intend to show
how good the performance of current implementation is, because of the scale and nature
of data. On the contrary, our implementation needs much improvement, which is shown
in the next section. However, this experiment does shed some light on the potential of our
geometry-based method in applications.

8.2 Extension to an attribute mining experiment: outline and difficulties

In order to expand the abovementioned mini example for further experiment, one instant
thought is to find a data set from real-world applications. We are mining the attributes
for consumer products, whose attributes could be retrieved from a B2C website, such as
JD.com. We focus on the products because of two reasons. First, product names contain
little polysemy. Second, product attributes on B2C websites are usually quite detailed.
For data preparation, we select products from several related categories like comput-

ers and digital devices. Since the attributes generally take string values, we transform
the attribute by methods derived from Section 7.2. We also tried to prune the data for
consistency.
The similarity model (Liu and Duan 2015) consists of two components: a relational

model and a hierarchy model. The relational model is based on the PMI-IR of two
products, while the hierarchy model based on the category on the JD.com. The other
algorithms are the same with those in the mini example.
Because this is an ongoing task, we will list some difficulties and future prospects.

• The product attributes listed on the website are not always attributes in a strict sense.
Some of the attributes are “basket” attributes, such as “characteristics,” which is too
vague to be considered in the experiment. Moreover, different attribute names may
refer to the same attribute.

• We need a “fine-grained” similarity model to capture the difference between within
one category because product attributes listed on the website only represent part of
the intension of the product. Generally, it is the part that it differs with other products

Table 3 Preliminary results from 5-fold cross validation repeated 10 times

setting 1 2 3 4 5 6 7 8 9 10 All

1:α = 0.0 0.72 0.70 0.65 0.73 0.69 0.72 0.69 0.69 0.65 0.70 0.694

2:α = 0.5 0.74 0.78 0.72 0.76 0.75 0.77 0.78 0.79 0.76 0.74 0.760

3:α = 1.0 0.71 0.70 0.64 0.69 0.67 0.70 0.71 0.71 0.71 0.70 0.693

4:α = 0.5,lsq 0.74 0.76 0.72 0.76 0.75 0.75 0.78 0.79 0.74 0.75 0.755

5:α = 0.5,log 0.62 0.60 0.65 0.63 0.65 0.62 0.63 0.66 0.65 0.67 0.637

β = 0.2
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in the same category. An initial idea is to combine different similarity models,
especially those utilizes different resources, such as ontology or corpus (word vectors).

• We need better methods to estimate the isometry, since a simple regression may not
be that accurate. Therefore, it may be useful to exploit new “kernel functions” for the
mapping, similar to those in support vector machines.

9 Conclusions
In this paper, we have introduced the computing of concepts in a vector space. We have
shown how to construct a function to map a concept’s similarity position to its concept
vector by embedding the concept space into a Euclidean space. Then, we have proved that
under some given conditions, both the function and the embedding do exist. We have
also discussed how to handle non-numerical attributes. We have shown some prelimi-
nary experimental results and shared some difficulties in implementation. Our results will
benefit future works in attribute retrieval.
This work is on its early stage. We are still facing some difficulties. Theoretically, one

problem is that the proposed conditions on matrix ranks are quite strong. For future
studies, we would like to find if there are alternative weaker conditions. In practice, it is
not actually so easy to find the isometry. Though we have suggested using linear regres-
sion for approximation, we may take advantage of other machine learning methods. In
a worse scenario, the weight matrix may even not exist. In this case, we will try to find
another mapping function from concept vectors to d-vectors other than the linear weight
function.

Endnote
1 Jin et al. (2014) note that if the similarity model satisfies triangle inequality, the

distance function 1 − s also does. Our proof actually contradicts their result.
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